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Breast cancer heterogeneity analysis 
as index of response to treatment using 
MRI images: A review

Introduction
Intra-tumor heterogeneity analysis presents a 

great challenge for the characterization of breast 
cancer’s response to treatment [1-3]. Several 
techniques have been documented to identify 
intra-tumor genetic heterogeneity or temporal 
diversity for breast tumor cells [4,5]. There is also 
evidence to demonstrate that, in breast cancers, 
sub-clonal cancerous cells may exist in different 
regions of a tumor (spatial heterogeneity), or may 
appear after one or many cycles of chemotherapy 
(temporal heterogeneity) [6,7]. However, while 
imaging is essential to diagnosis, staging and 
response assessment, most clinical radiology, 
and research studies only measure tumor size by 
response evaluation criteria in relation to solid 
tumor response (RECIST) [8]. Neoadjuvant 
chemotherapy (NAC) is commonly recommended 
for advanced breast cancers, with the aim of 
facilitating conservative surgery and achieving 
more survival [9,10]. Magnetic Resonance 
Imaging (MRI) technique produces a variety of 
image types, such as T1-weighted, T2-weighted, 
dynamic contrast enhanced and diffusion weighted 
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images [11-15]. Each of these sequences is relevant 
to quantifying breast tumor heterogeneity. 
Therefore, several studies have shown that MRI 
has better diagnostic accuracy than other clinical 
breast examinations, such as ultrasonography 
and mammography [16-20]. Indeed, functional 
imaging sequences of MRI enable a greater lesion 
to background enhancement.

Breast cancer heterogeneity has been 
quantified using several image analysis 
techniques: 1-histogram analysis is used to 
compute many features, such as standard 
deviation (SD) and percentile values; 2-texture 
analysis is used to quantify the breast tumor 
heterogeneity by studying the spatial variation 
of tumors; 3-parametric response mapping is 
used to compare the baseline and post-treatment 
examinations [21-23]. In this paper, an overview 
of works concerned with the study of MRI breast 
tumor heterogeneity as a biomarker of response 
to neoadjuvant treatment will be presented. For 
each study, the patient number, MRI timing 
and acquisition, reference, and the results found 
are presented in some comprehensive tables. 
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voxels was ignored by the histogram analysis 
approach.

Padhani et al. [29] performed a retrospective 
study of 25 patients with primary breast cancer 
before and after the first cycle of treatment. 
The T1-weighted sequence acquired at 2 min 
and 42 s after the injection of the contrast. 
Treatment response in breast cancer patients 
was more sensitive using the range of the 
Ktrans [30] histogram, compared with the use 
of the median of Ktrans. Receivers operating 
characteristic (ROC) analysis of the tumor size 
were used to identify patients who showed no 
response to chemotherapy. It was demonstrated 
that responsive patients showed a decrease in the 
range of Ktrans histogram values. Furthermore, 
non-responsive patients showed a widening of 
the Ktrans histogram.

Hayes et al. [31] used DCE-MRI sequence 
on 15 patients with breast cancer before and 
after one chemotherapy cycle. In this study, 
regions of interest (ROIs) were delineated on 
the subtracted images. Changes in the temporal 
pattern of signal enhancement, the amplitude 
of enhancement, and Ktrans were determined. 
Ktrans histogram was generated using the 
whole tumor ROI before and after treatment. 
This histogram was used to evaluate tumor 
heterogeneity. A decrease in the high Ktrans 
values in responsive patients after one cycle 
of treatment, and an increase in the number 
of lower Ktrans were observed. Therefore, 
in non-responsive patients, the opposite 
effect was observed, with a shift in histogram 
distribution to the right (higher Ktrans values). 
It was concluded that histogram distribution 
features other than the median value can 
provide additional information regarding the 
mechanism of tumor response. A greater range 
of changes in the absolute value of Ktrans was 
observed in the upper extremes of the histogram 
(‘hot-spots’) compared with the median values. 

The tumor nature represents spatial 
heterogeneity. However, the above studies 
showed results based only on the histogram 
technique, which ignores the spatial relationship 
between the tumor voxels. Indeed, an identical 
histogram can present two different tumors, for 
example, a tumor with identical sub-regions 
could have a similar histogram with a tumor 
having many dispersed features over the integral 

Methods
While there are several methods used for breast 

imaging in the literature, here the focus is on the 
use of MR images for intra tumor heterogeneity 
as index of breast cancer assessment. In this review 
paper, we included only publications related to 
the breast tumor heterogeneity assessment using 
MR images to predict the response to treatment 
using images from a considerable number of 
patients as data. The studies have been classified 
into three categories based on the heterogeneity 
quantification techniques used: Histogram 
Analysis (HA), Texture Analysis (TA) and 
Parametric Response Mapping (PRM). 

 � Histogram analysis
Histogram analysis describes the statistical 

information of an image or a region/volume of 
interest. Indeed, intra-tumor heterogeneity can 
be quantified by analyzing histogram shape of 
the volume of interest (VOI). Most histogram 
analysis technique uses descriptive parameters 
to characterize and compare distributions of 
tumor voxels. This analysis provides quantitative 
measures, such as standard deviation, kurtosis, 
and skewness. These parameters represent the 
first-order statistical properties of images [24].

Many studies have concluded that histogram 
analysis contributes to discriminating between 
benign and malignant tumors [25,26]. However, 
few of them correlate histogram based measures, 
such as kurtosis, skewness and percentile, with a 
response to treatment [27].

In this context, Johansen et al. [28] 
performed a retrospective study including 24 
patients with breast cancer, scanned before and 
after the first cycle of chemotherapy, using data 
from dynamic contract enhanced MR images 
(DCE-MRI). Images were acquired 3 to 5 
min after the injection of the contrast agent. 
Relative signal intensity (RSI) histograms and 
AUC were calculated from the DCE-MRI 
curve, from which five measures were extracted 
(mean, standard deviation, skew and kurtosis) 
and used for 5 year survival prediction. Clinical 
response (CR) was used as a reference, and it 
was concluded that skewness and kurtosis are 
strongly correlated to the response to treatment 
by using KNN and PNN (Kohonen and 
probabilistic neural network) methods. The 
sensitivity and specificity of this approach were 
between 80% and 92%, respectively. However, 
in this study the spatial relationship between 
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mass. Therefore, spatial distribution information 
is recommended to differentiate this type of 
lesion [32-34].

 � Texture analysis
In this section, an overview of research studies 

using texture analysis approach to quantify 
breast cancer response in MR images [35-42] 
will be presented.

Texture analysis methods are used to study the 
distribution of individual voxels within a tumor 
region and provide their spatial relationship. 
Texture analysis in MRI data is frequently 
based on the Gray-Level Co-occurrence Matrix 
(GLCM). The latter was first described by 
Haralick et al. [33]. In this method, a matrix is 
defined over an image (or ROI) to provide the 
distribution of co-occurring pixel/voxel values, 
which provides information about their spatial 
relationship. Many textural features, such as 
entropy, correlation, uniformity, variance, and 
homogeneity and 14 other features, can be 
extracted from the GLCM [34]. 

In this context, Golden et al. [35] performed a 
retrospective study to predict four types of breast 
cancer response in 60 patients using a dynamic 
protocol of DCE-MRI. These patients were 
receiving NAC treatment. Quantitative lesion 
analysis was achieved by extracting four GLCM 
texture features from six kinetic maps of each 
tumor volume. The reference of treatment was 
determined on the pathologic complete response 
(pCR) as 22.37% and 25.83% for residual 
invasive tumor and/or positive lymph node. 
The authors concluded that the heterogeneity in 
kinetic maps could reflect heterogeneity in the 
physiology of the tumors.

This study was performed using two-
dimensional images instead of three dimensional 
ones. The number of cycles was not the same 
for every patient, in fact among the 60 patients 
there were 12 patients who were treated with 4 
cycles and the 48 remaining patients underwent 
treatment for 6 cycles of treatment. 

Teruel et al. [36] studied the potential of 
texture analysis using DCE-MRI data to predict 
clinical and pathological responses to NAC 
after 4 treatment cycles. A retrospective study 
of 58 patients with advanced breast cancer 
was performed. Each lesion was segmented 
semi-automatically using 2 min post-contrast 

subtracted images. Using four GLCMs, 16 
texture features were determined over tumor 
volumes at each non-subtracted post-contrast 
time point. Firstly, for each slice containing 
tumor, histogram equalization was applied, 
accounting for the segmented tumor region. 
Secondly, four 32*32 GLCMs were calculated 
for each image. Prediction of the clinical and 
pathological response was based on multiple 
statistical tests (q-values and p-values). 
Significant results were found at 3 min post-
contrast for various texture features. Four 
texture features (sum variance, sum entropy, 
entropy and difference variance) were found to 
be significant at the 2 min time point, with an 
area under the curve (AUC) of 0.69. 

Michoux et al. [37] performed a retrospective 
study of 69 cases with invasive ductal 
carcinoma of the breast receiving pre-treatment 
chemotherapy using DCE-MRI. One pre- and 
five post-injection images were acquired with a 
temporal resolution of 1 min after injection of 
the contrast agent. The total acquisition time 
for the protocol was about 6 min. Pathological 
complete response (pCR) was defined by the 
absence of invasive cancer in breast and nodes. 
DCE-MRI was performed at 1.5T with a fat-
suppressed sequence. Visual texture (GLCM 
and Run Length Matrix (RLM) [38]), BI-RADS 
and kinetic parameters were measured in each 
region of interest. The prediction model, based 
on the 4 parameters (inverse difference moment, 
Gray-Level Non-uniformity, Long Run High 
Gray-Level Emphasis, wash-in) and k-means 
clustering as a statistical classifier, identified 
non-responsive patients with a high sensitivity 
of 84%. Biological markers and histological 
grades, combined with texture and kinetic 
parameters, did not yield an improvement of 
the prediction accuracy. However, the authors 
point out that the biological parameters should 
not be ignored.

Afrane et al. [39] performed a retrospective 
study of a quantitative T1-weighted DCE-MRI 
for 100 patients with breast cancer, to predict the 
response to treatment through texture analysis. 
Texture analysis was performed on pre-contrast 
and on 1 to 5 min's post-contrast images. 
Software was developed to use texture features 
based on GLCM. Patients were classified in terms 
of their level of response to treatment: partial 
responders (PR) corresponding to a decrease in 
tumor size of 50% and non-responders (NR) 
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compared using ROC curve. Images of all 
patients were filtered to highlight different size 
characteristics (from 2 to 12 pixels). Treatment 
results show an increase in uniformity and a 
decrease in entropy in all images, using several 
filters. In fact, the results of uniformity and 
entropy were as flow: uniformity: 23.45% and 
22.62%; entropy: 219.15% and 219.26%.

Jae-Hun et al. [42] performed a retrospective 
study using texture analysis of the entire primary 
breast tumor in 203 patients. T2-weighted and 
contrast-enhanced T1-weighted subtraction 
sequences, acquired 90 s after contrast injection, 
were used. MR imaging was performed with a 1.5 
T. To quantify tumor heterogeneity, uniformity 
and entropy features were calculated from T2-
weighted, contrast-enhanced and T1-weighted 
subtraction images for all ROIs. Indeed, entropy 
is a measure that can reflect tumor texture 
irregularity, and uniformity. Entropy can also 
show how gray levels are distributed in an 
image. A 10-fold cross-validation [36] was used 
on the image dataset to avoid over-fitting and 
determine cut-off points in the ROC curve. 

 � Parametric response mapping (prm)
Parametric Response Mapping (PRM) is a 

new method which enables the evaluation of 
a patient’s response to chemotherapy. PRM 
measures changes of quantitative MRI values in 
underlying tumor tissues by using a voxel-by-
voxel approach. This method is mainly intended 
to compare pre- and post-treatment VOI. 
This comparison is performed using image co-
registration technique, at short time intervals 
after the initiation of treatment, to provide 
not only an early assessment of the treatment 
outcome, but also information of intra-tumor 
heterogeneity [43]. This technique has not 
been widely used for breast cancer. However, 
the technique has proven its efficiency in brain 
cancer research. 

Cho et al. [44] presented a prospective 
study of 48 patients with breast cancer was 
performed. T1-weighted sequence (7 min after 
contrast agent injection) was used before and 
after the first cycle of NACT. The pathological 
response was observed after surgery. The tumor 
size was measured on DCE-MRI images, and 
was considered as the same tumor size after 
the chemotherapy. Non-linear automatic 
registration was performed for each volume 
obtained before treatment (baseline) and after 

correspond to a decrease of less than 50%. ROIs 
were generated semi-automatically on all slices 
from DCE-MRI sequences. For texture analysis, 
ROIs from breast images were used on several 
slices, to provide an assessment of the whole 
tumor volume.

Minkowski functionals [40] is another texture 
analysis technique which can be an alternative to 
GLCM. In this method, instead of analyzing the 
MR images directly, a series of binary images are 
used. These images are extracted from MR scans 
using a rising threshold to remove irrelevant 
pixels. Minkowski Functionals enables to extract 
only three texture features, compared to the 
GLCM method which can provides more than 
16 features. 

Micheal et al. [40] performed a retrospective 
study, using texture analysis of DCE-MRI 
data from 100 patients with breast cancer. A 
quantitative fat-nulled T1-weighted sequence 
was used in this study. Images taken from the 
2nd or 3rd post-contrast phase were acquired 1 
min after injection of the contrast agent. Instead 
of using classic GLCM for each binary image, 
three Minkowski Functionals values (area, 
perimeter, euler value) were calculated. Indeed, 
the change of binary threshold was raised using 
6th order polynomials. These polynomials 
provided the five patients’ subgroups: Triple-
Negative Breast Cancer (TNBC) status, 
chemotherapy response, biopsy grade, nodal 
status, and lymph vascular invasion status. It 
was confirmed that the Minkowski Functionals 
method provided several significant differences 
in the TNBC, biopsy grade and lymph vascular 
invasion status, with a p-value lower than 0.05.

Parikh et al. [41] performed a retrospective 
study using texture features derived from 
DCE-MRI data of 36 patients with primary 
breast cancer. These patients were receiving 
neoadjuvant chemotherapy (NACT). T2 and 
T1-weighed DCE-MRI imaging was performed 
before treatment, mid-treatment (after three 
NACT cycles) and after treatment. The images 
were acquired 3 min after the injection of 
the contrast agent. Changes in MRI imaging 
heterogeneity were correlated with pathologic 
complete responders (pCR) and compared with 
the standard method (RECIST). Changes in 
tumor entropy (irregularity) and uniformity 
(gray-level distribution) were determined before 
and after MRI image filtration. Entropy and 
uniformity for pCR and non-responders were 
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the first cycle of chemotherapy. Co-registration 
technique was evaluated and validated, first, by 
using the toggle view, and second, by blended 
volume visualization or checkerboard view tools. 
PRM analysis was performed by calculating the 
interval change between the baseline and the 
first cycle signal intensity, using a voxel-to-voxel 
comparison. The results show that among the 48 
patients evaluated, 6 patients achieved pCR and 
42 were non-pathological responders (npCR). 
38 patients showed a good response, with a 
grade above 3, and 10 patients demonstrated 
a low response, with a grade of 1 or 2. PRM 
prediction of good response showed an AUC 
of 0.72. One of limitation of this method 
is the high processing time due to manual 
segmentation and co-registration of images.

Boes et al. [45] presented a new approach 
for the co-registration of images pre- and 
post-treatment using MRI diffusion-weighted 
imaging (DWI) was presented. A deformable co-
registration was based on the thin-plate splines 
(TPSs) geometric technique. The data was 
obtained from several multi-center prospective 
clinical trials including 52 patients, adjusted 
for 4 to 5 min scans. This approach can be used 
to develop and validate PRM-based methods 
as early response metrics for the prediction of 

breast cancer responders from non-responders 
using DWI and DCE-MRI images. 

Results
In this section, three comparative tables of 

the methods discussed in the previous sections 
are presented: TABLE 1 (Histogram Analysis), 
TABLE 2 (Texture Analysis) and TABLE 3 
(PRM). For each method, the number of 
patients, MRI timing, technical details and 
findings are presented. Of these studies, 25% 
reported the use of Histogram Analysis, 58,33% 
Texture Analysis and 16,67% PRM.

 � Histogram analysis
Number of patient, timing, method finding 

and other information are presented in 
TABLE 1, where an overview of the research 
using histogram analysis as an index of breast 
cancer response to chemotherapy treatment is 
presented [28-30].

In this context, the skewness and kurtosis 
features extracted from tumors regions of 
patients with breast cancer receiving NAC 
were calculated in our institution. Histograms 
from MRI subtraction sequence of responsive 
(FIGURE 1) and non-responsive patients are 
presented in FIGURE 2.

Table 1. Literature on the histogram analysis technique for assessing breast cancer response.

Author Patients Timing Method Acquisition Study1 Reference Findings

Johansen et al. 
[28] 24 1 Cycle2

Histogram Analysis

of RSI3 of DCE-MRI

(semi-automated 
segmentation)

DCE-MRI-T1

(3-5 min after 
injection of 

contrast agent)

Retro CR4

- Reduction of AUC5 after 1 
cycle of chemotherapy

Padhani et al. 
[29]

25
1-2 

Cycles

Histogram Analysis of 
Ktrans DCE-MRI values

(semi-automated 
segmentation)

DCE-MRI-T1

(2 min 42 s 
after injection of 
contrast agent)

Retro pCR6

- Absence of pCR was 
improved by tumor size 
and Ktrans values

- AUC for size: 0.93 

- AUC for Ktrans7 Range: 
0.94

Hayes et al. 
[31]

15 1 Cycle

Histogram Analysis of pixel 
maps of K(trans) 8

(semi-automated 
segmentation)

DCE-MRI-T1

(1 min after 
injection of 

contrast agent)

Retro1 pCR

 - Changes in the rate of 
enhancement and Ktrans 
values were correlated by 
more than 50%

- Negative correlation 
between Ktrans values and 
response to treatment

1 Retrospective/Prospective
2  Cycle of chemotherapy
3  Relative signal intensity
4  Clinical Response
5  Area under the curve
6  Pathological Complete Response
7 Volume transfer coefficient reflecting vascular permeability
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Table 2. Literature on the texture analysis technique for assessing breast cancer response.

Author Patients Timing Method Acquisition Study Reference Finding

Golden et 
al. [34]

60 4-6 Cycles

GLCM1

(Semi-Automated

segmentation)

DCE-MRI-T2

(2 min 42 s 
after injection 

of contrast 
agent)

Retro
pCR+Lymph 

Nodes

- pCR was determined as reference to 
treatment

- Texture features extracted after chemotherapy 
predicted a residual invasive tumor

- Correlation between Kinetic maps and tumor 
physiology heterogeneities

Teruel et al. 
[35]

58 4 Cycles

GLCM
(Semi-Automated

segmentation)

DCE-MRI-T1

(2 min after 
injection of 

contrast agent)

Retro pCR+cR2

- 8 texture features were significant at 2 min’s 
post-contrast

- AUC=0.69 for response prediction using 
entropy using pCR as reference

Michoux et 
al. [36]

69 4 Cycles

GLCM
(Semi-Automated

segmentation)

DCE-MRI-T1

(1 min after 
injection of 

contrast agent)

Retro pCR

- AUC=0.50 for 8 significant texture features

- AUC=0.68 for 4 significant texure feature

- AUC=0.74 for homogeneity feature as a best 
predictive model

Ahmed et 
al. [38]

100 4 Cycles

GLCM
(Semi-Automated

segmentation)

DCE-MRI-T1

(1-5 min after 
injection of 

contrast agent)

Retro cR

- 8 texture parameters provided differences 
between response and partial response

- High grade and TNBC3present poorer 
prognosis with more heterogeneity

Fox et al. 
[39]

100
0 Cycles

(baseline)

Minkowski 
Functional
(Semi-Automated

segmentation)

DCE-MRI-T1

(1 min after 
injection of 

contrast agent)

Retro cR
- Strong differences (P  ≤  0.01) were found 
between TNBC and other patient subgroups 

- AUC=0.92 for TNBC classification

Parikh et al. 
[40]

36
3

Cycles

GLCM
(Semi-Automated

segmentation)

DCE-MRI-T2

(1-3 min after 
injection of 

contrast agent)

Retro pCR
- Negative correlation between uniformity and 
entropy for all filters

- AUC=0.84 was found 8 pCR and 8 cR

Kim et al. 
[41]

203
Not 

mentioned

GLCM
(Semi-Automated

segmentation)

DCE-MRI-T1 
and subtraction 

T2

(90 s after 
injection of 

contrast agent)

Retro cR

- Mean cut-off=0.034 for T1-uniformity

- Mean cut-off=5.057 for T1-entropy

- Mean cut-off=0.019 for T2-uniformity

- Mean cut-off=6.013 for T2-entropy

9  Gray Level Co-occurrence Matrix

Table 3. Literature on PRM technique for assessing breast cancer response.

Author Patient Timing Method Acquisition Study1 Reference Finding

Cho et al. 
[43]

48
1 

Cycle

Nonlinear 
Registration 

(Manual

segmentation)

DCE-MRI-T1
(7 min after 
injection of 

contrast agent)

Prosp pCR
- 6 patients achieved pCR and 42 showed npCR1 
- AUC=0.71 for prediction of good response by 
PRM

Boes et al. 
[44]

100 4 Cycles

Registration 
Thin Plat 
Splines

(Semi-Automated

segmentation)

DW-MRI-T1 & 
DW-MRI-T2

(4-5 min scan)
Retro pCR

- Description of PRM applied to breast tumor 
- Indication of significant changes in voxel-based 
changes in DW-MRI images using test-retest 
clinical scans

10 Complete Response
11 Triple-Negative Breast Cancer
12 Non-pathological response
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Figure 1. A. Shows the DCE-MRI sequence of a large tumor in the left breast. B. Shows the histogram of the 
ROI. Skewness was estimated at 9.08 and kurtosis was estimated at 93.48. C. Shows the lesion after 3 
chemotherapy cycles, therefore two months after the initiation of the treatment. D. The histogram analysis 
shows a decrease of skewness, which was estimated at 7.33 and of kurtosis, which was estimated at 
82.81, a sign of response to treatment. The patient was classified as responsive. Following the literature, 
histogram analysis could be supplementary in the prediction of pCR after neoadjuvant treatment.

Figure 2. A. Shows a DCE-MRI sequence of a large tumor in the left breast. B. Shows the histogram of the 
ROI. Skewness was estimated at 13.03 and kurtosis was estimated at 199.08. C. Shows the lesion after 
3 chemotherapy cycles. D. The histogram analysis does not show a major change in the skewness, which 
was estimated at 13.00, nor in kurtosis, which was estimated at 199.21, which is a sign of non-response 
to treatment. The patient was classified as non-responsive.
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 � Texture analysis
In the context of texture analysis, we present 

in TABLE 2 an overview of researches using 
texture analysis as index to predict breast 
response to chemotherapy treatment.

 � Parametric response mapping (PRM)
TABLE 3 show the studies using PRM 

technique as tool for the prediction of breast 
tumor response to neoadjuvant treatment 
[44,45]. In this TABLE, Patient number, 
method and finding are summarized. 

The PRM method is demonstrated using a 
data set for a patient with breast cancer receiving 
chemotherapy treatment in our institution. The 
obtained results are presented in FIGURE 3.

Discussion
In this paper, a review of literature related to 

the evaluation of the intra-tumor heterogeneity 
of breast tumors as a biomarker of treatment 
response was conducted. Three principal image 
analysis techniques were found: Histogram 
Analysis, Texture Analysis and Parametric 
Response Mapping (PRM). It was noted that 
most of the above-mentioned studies used 1 to 
6 cycles of treatment [46-48].

Several histogram and texture based researches 
were focused on detection and identification of 
malignant and benign tumors. For example, 
Cho et al. [26] used histogram analysis to detect 
tumor malignancy level, Karahaliou et al. [46] 
investigated texture analysis to quantify the 
heterogeneity of breast lesions to discriminate 
malignant from benign ones. Chen et al. [47] 
and Nie et al. [49] extended the traditional 
GLCM method to investigate a volumetric 
texture analysis approach to characterize breast 
MRI lesions. Otherwise, there were fewer 
studies exploring the potential of intra-tumor 
heterogeneity as index of response to treatment.

In case of histogram analysis as index for 
predicting breast tumor response, it was 
concluded that a better approach is to gather 
relevant information in a set of descriptors. 
Nevertheless, among all the statics used for 
histogram analysis, no one has been found to be 
relevant to perform a complete index to assess 
breast tumor response to treatment. Histogram 
analysis as marker for breast tumor response 
was presented in the literature between 2002 
and 2009 [28-31]. This method is relatively 
outdated and has only been validated with small 
number of patients (between 15 and 24).

Figure 3. A. Shows a slice of a diffusion sequence of a breast tumor before treatment. B. Shows the same 
slice after one cycle of chemo. C. Shows results of registration between two volumes (in A and B), the 
colors on the PRM indicate the intra tumor level of diffusion, as presented in D. On the PRM, the blue 
color indicates the response to treatment (10%), the green color indicates non-response, and the red 
indicates the progression of disease (8%).
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For texture analysis, there are many 
important features to be calculated from GLCM 
matrix: entropy, uniformity, homogeneity, 
heterogeneity. For example, entropy represents 
the disorder and randomness of gray levels, and 
uniformity represents the gray-level distribution 
and determines how close values are uniform 
[28]. To achieve reliable results, some conditions 
should be considered such as, applying the 
technique of texture analysis to tumors with 
high-resolution and no discreet size. Texture 
analysis as marker for breast tumor response 
was presented in the literature between 2013 
and 2016 [35-42] which is recent compared 
to histogram analysis. Additionally, the texture 
analysis technique was validated in the literature 
with a high number of patients (between 36 and 
203).

Texture is defined as a repeating pattern, 
which has random variation. In fact, this method 
may be inappropriate for evaluating discreet 
tumors acquired in relatively low-resolution 
images, such as DW-MRI. Moreover, texture 
analysis can describe intra-tumor heterogeneity 
but cannot capture spatial modifications during 
treatment by the longitudinal comparison 
of baseline and post-treatment control 
examinations. An alternative strategy is to treat 
parameter maps as objects rather than textures. 
As highly heterogeneous parameter maps are 
more complex to analyze, the quantification 
of spatial heterogeneity can be obtained by 
determining the complexity of the parameter 
map objects [49].

Parametric Response Mapping (PRM) has 
been used primarily for brain cancer [50-52], 
where it has proven to be a relevant technique 
for predicting response to chemotherapy. Moffat 

Figure 4. Overview of the state of the art by year and number of patients.

et al. [52] used DCE-MRI acquisition for 20 
patients with primary brain tumors. In this 
study, all MR images were spatially co-registered 
by using the pre-treatment T2-W sequence as 
the reference data set. 

The variability in the numbers of studies for 
each imaging biomarker can be explained by 
the high number of parameters used in texture 
analysis, which confirms the results’ reliability. 
Therefore, histogram analysis does not give 
enough information for the relationship between 
the different pixels on the images. Only two 
studies were performed using PRM analysis for 
breast cancer response. One reason is that PRM 
relies heavily on breast image registration, which 
remains a challenging task due to low spatial 
resolution of DW-MRI, breast deformation 
during longitudinal scans and tumor size can 
change during chemotherapy treatment. 

FIGURE 4 shows a comparison of the three 
methods presented in this paper, based on the 
number of patients, dates of publication, and 
the number of published papers.

The disadvantage that we can conclude based 
on this discussion is that the parameters used 
by each method differ from paper to another, 
depending on the type of MRI sub-modality 
and the statistical method used in each study. 
This can influence the choice of a standard or 
general method applied to all MRI breast data. 
So, based on the data used we can adapt technical 
methods such as Texture analysis to quantify a 
breast tumor heterogeneity that can provide a 
good prediction of response to treatment. 

Conclusion and future work
Experimental evidence shows that MRI 

imaging provides an essential tool for assessing 
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cancerous tumor evolution during NAC 
treatment. Several techniques have been 
developed to quantify and analyze breast tumor 
heterogeneity with DCE-MRI. In this paper, 
we presented different initial studies which deal 
with the imaging makers concept, applied to 
MRI sequences such DCE-MRI and DW-MRI, 
based on Histogram Analysis, Texture Analysis 
and PRM. These techniques have shown 
promising results for breast response assessment 
and tumor grading. This paper can be used as 
a guideline to help investigators to understand 
the above-mentioned concepts. Finally, PRM 
technique was introduced as an index of breast 
cancer response to NAC treatment, which has 
already been proven to be efficient in brain 
tumor assessment, and deserve more attention 

in future work for breast cancer.
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